
722 PIERS Proceedings, Taipei, March 25–28, 2013

A New Parallel Version of the DDSCAT Code for Electromagnetic
Scattering from Big Targets

R. W. Numrich1, T. L. Clune2, and K.-S. Kuo2, 3

1The Graduate Center, City University of New York, New York, New York, USA
2NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

3Earth System Science Interdisciplinary Center, University of Maryland
College Park, Maryland, USA

Abstract— We have modified the publicly available electromagnetic scattering code called
DDSCAT to handle bigger targets with shorter execution times than the original code. A big tar-
get is one whose sphere equivalent radius is large compared to the incident wavelength. DDSCAT
uses the discrete-dipole approximation and an accurate result requires the spacing between dipoles
to be small relative to the wavelength. This requirement, along with the big target size, implies
that the number of discrete grid cells defining the computational grid box surrounding the target
must be large. The memory requirement is thus significant and the execution time long. The
original version of the code cannot handle large enough targets that we would like to consider
because they require memory exceeding what is available on a single node of our cluster and
execution time extending to days.

We have removed two limitations of the original version of the code. First, to speed up the
execution involing multiple target orientations, the original code assigned one, but only one,
MPI process to each independent orientation. We surmount this limitation by assigning each
orientation a team of processes. Second, the original code allocated all the memory for the full
problem for each MPI process. We surmount this limitation by decomposing the data structures
across the members of a team. With these changes, the new version can handle much bigger
targets. Moreover, it exhibits strong scaling for fixed problem size. The execution time decreases
very nearly 1/p as the processor count p increases. Execution time measured in days with the
original code can now be reduced to fractions of an hour.

1. INTRODUCTION

The discrete-dipole approximation (DDA), based on the original work of Purcell and Penny-
packer [7], is a standard method for calculating electromagnetic scattering cross sections of ir-
regularly shaped targets [6]. One of the more effective codes for this kind of calculation is the
DDSCAT code from Draine and Flatau [1]. A comparable one is the ADDA code from Yurkin and
Hoekstra [9]. Kahnert provides a review of other solution methods in a recent review paper [3].

DDA reduces the scattering problem to the solution of a large, dense, complex symmetric system
of linear equations,

Ax = b (1)

Design of a code to solve these equations and the resulting performance of the code depend on
the data structures chosen to represent the matrix and the solution technique selected to solve the
system of equations. Since the matrix is a symmetric Toeplitz matrix, only the elements of a single
row need be stored, and these elements can be decomposed and distributed across processors in
a straightforward way. To solve the system of equations, the community has, after many years of
expermentation and analysis, settled on using one or another variation of Krylovbased solvers [8,
Chs. 6–7]. These iterative solvers require several matrix-vector multiplications at each iteration.
Since the matrix is Toeplitz, representing a convolution, this operation can be performed using
Fast Fourier Transforms. The matrix-vector multiplication, then, becomes a forward FFT of two
vectors followed by multiplication in Fourier space followed by inverse FFT back to physical space.

The parallel strategy adopted in the original version of the code assigns a separate MPI process
to each independent target orientation. Each MPI process allocates all the memory for the full
problem, which may exceed the memory available on a node for big targets, and the number of
processes that could be used is limited by the number of orientations. The new code assigns a
team of MPI processes to each independent orientation and partitions the data structures by the
size of the team. The problem now fits in memory and more processes can be used to reduce the
execution time.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2013

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
A New Parallel Version of the DDSCAT Code for Electromagnetic
Scattering from Big Targets

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The Graduate Center, City University of New York, New York, New
York, USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADA584538. Progress in Electromagnetics Research Symposium (33rd) (PIERS 2013) held in
Taipei, Taiwan on 25-28 March 2013. U.S. Government or Federal Purpose Rights License

14. ABSTRACT
We have modi¯ed the publicly available electromagnetic scattering code called DDSCAT to handle bigger
targets with shorter execution times than the original code. A big tar- get is one whose sphere equivalent
radius is large compared to the incident wavelength. DDSCAT uses the discrete-dipole approximation and
an accurate result requires the spacing between dipoles to be small relative to the wavelength. This
requirement, along with the big target size, implies that the number of discrete grid cells de¯ning the
computational grid box surrounding the target must be large. The memory requirement is thus signi¯cant
and the execution time long. The original version of the code cannot handle large enough targets that we
would like to consider because they require memory exceeding what is available on a single node of our
cluster and execution time extending to days. We have removed two limitations of the original version of
the code. First, to speed up the execution involing multiple target orientations, the original code assigned
one, but only one, MPI process to each independent orientation. We surmount this limitation by assigning
each orientation a team of processes. Second, the original code allocated all the memory for the full
problem for each MPI process. We surmount this limitation by decomposing the data structures across the
members of a team. With these changes, the new version can handle much bigger targets. Moreover, it
exhibits strong scaling for ¯xed problem size. The execution time decreases very nearly 1=p as the
processor count p increases. Execution time measured in days with the original code can now be reduced to
fractions of an hour.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 25–28, 2013 723

2. THE DISCRETE-DIPOLE APPROXIMATION

DDA surrounds the target with a three-dimensional computational grid box discretized into cubical
cells of volume d3 with a dipole located at the center of each of the cells occupied by the target [7].
If there are n dipoles in the target, the volume occupied by these dipoles is nd3, resulting in an
sphere-equivalent radius of a, defined by the relationship, nd3 = (4π/3)a3. Scattering cross sections
are often measured in units equal to the cross sectional area, πa2 [2, Ch. 16, 4, Ch. 2].

The accuracy of the method requires [1, 10, 11] that the grid spacing between cells, d, be small
relative to the wavelength,

2|m|kd < 1 (2)
where m is the complex refractive index of the target and k = 2π/λ is the wavenumber.

A target is considered “big” if its size parameter, ka, is much bigger than one, i.e., ka À 1.
Coupled with requirement (2), it implies a large number of dipoles, n > (2 |m| ka)3, and almost
always an even larger number of grid cells. The memory requirement for a large target may thus
exceed what is available on a single computer or a node in a cluster. Furthermore, the computational
work that must be done to solve the system of equations increases with the size of the grid box and
the execution time for large targets may easily expand to days if only a single node can be used. To
address these two problems, we decompose the computational box such that each partition of the
box fits into the memory of a single node, and we assign a team of processors to work in parallel
on each partition to reduce the execution time.

3. THE PARTITIONED COMPUTATIONAL PROBLEM

The parallel implementation strategy for any application code involves two issues: how to partition
data structures and how to assign work. The original code takes into consideration one of these
issues, the assignment of work, but does not consider the partition of data structures. The new
version addresses both issues.

The details of the partition depend on the details of how the system of Equation (1) is represented
on the grid points of the discretized computational grid box. The vector on the right side is
proportional to the incoming plane wave, exp (ik · r), with wavelength λ, wavenumber k = |k|,
and the direction of the wave vector relative to the target by three Euler angles (α, β, γ). At each
grid point of the computational grid box, the vector on the right side of the system of equations,
bijk = exp [ik · (ri, rj , rk)], has values proportional to the value of the plane wave at each grid point
r = (ri, rj , rk). In the same way, the values of the elements of the matrix A are evaluated relative
to the grid points, and the solution vector x is found at each grid point. In practice, indices for the
points on the three-dimensional grid are serialized so that the quantities b and x can be thought
of as vectors of length n3 and the matrix A can be thought of as a matrix of size n3 × n3.

The decomposition strategy is straightforward. The vectors involved are partitioned along one
of the directions of the computational grid box. If the grid points have been serialized in lexical
order, the x-direction first, followed by the y-direction and then by the z-direction, the vectors can
be partitioned in the z-direction by the team size (i.e., number of processes per team) assigned to
the partition. Correspondingly, the rows of the matrix are partitioned along the z-direction. This
partitioning introduces overhead into the code due to the requirement for moving distributed data
structure among team members, but for big targets, this overhead is small as our results show in
later sections.

4. PARALLEL CONVOLUTION

Special properties of the matrix A make the problem tractable. The matrix is a function of the
magnitude of the plane wave vector, k = |k|, not its direction, i.e., A = A(k). The matrix can thus
be calculated once for each wavelength and used for all orientations of the incoming wave. It is
also a Toeplitz matrix. The values of its elements depend on the distance between grid points such
that, in the serialization representation, the matrix elements have the property, aij = ai−j . It can
then be represented by one of its rows, a vector of length n3, rather than a matrix of size n3 × n3.

The vector b(k) and the solution vector x(k), on the other hand, are necessarily functions of
both the magnitude and the orientation of the incoming wave. Thus, for each orientation, the
matrix remains the same but the right-hand-side vector changes so the system of equations,

A (k)x (k) = b (k) , (3)

must be solved for the solution vector for each oreientation.

724 PIERS Proceedings, Taipei, March 25–28, 2013

When iterative Krylov solvers are used to solve this system, several matrix-vector multiplications
of the kind: y = Ax, must be performed for each iteration. Since the matrix is Toeplitz, its
elements depend only on the difference of the indices, and the matrix-vector multiplication becomes
a convolution, yi =

∑
j ai−jxj . The operation count for this multiplication is on the order of the

square of the rank of the matrix if done in the usual way. But since the Fourier transform of a
convolution is the product of the Fourier transforms of the the two factors, F (y) = F (A) · F (x),
the operation count can be reduced to the order of the matrix size times the logarithm of the
matrix size. This difference results in a signficant saving of computation time. The result vector is
retrieved with the inverse transform, y = F−1 [F (A) · F (x)].

The Fourier transform is a three-dimensional transform over the grid points of the computa-
tional box. Since the box has been decomposed along the z-direction, data communication among
processors is required, which is not required on a single processor. Each processor can perform the
transform independently for the grid points it owns in the xy-plane, but the data structure must
be transposed to do the transform in the z-direction. The matrix can be transformed once for
each wavelength and left in the transposed data structure in Fourier space. It does not need to be
transformed back to the original decomposed data structure. The vectors at each iteration of the
Krylov solver are also left in transformed Fourier space and multiplied by the matrix. Only then
is the product of the two vectors transformed back to the original partitioned data structure.

An important optimization of the convolution step results from treating the zeros that must be
padded onto the vectors before performing the Fourier transform [5]. Total time for the transform,
using a Fast Fourier Transform (FFT) library, is the sum of the time in each of the three dimensions,
t1 = tx+ty +tz. If the dimensions are about the same in each dimension, the time for the transform
is the same in each direction, tx = ty = tz = t0, and t1 = 3t0. During the FFT in the x-direction,
the time reduces by half by not computing over the zeros in the y-direction and again by half by
not computing over the zeros in the z-direction. Likewise, in the y-direction, the time reduces by
half by not computing over the zeros in the z-direction. The time in the z-direction remains the
same so the reduced time becomes, t2 = t0/4+ t0/2+ t0 = (7/4) t0, and the speedup in performance
becomes t1/t2 = 3t0/(7t0/4) = 12/7 ' 1.71.

For large targets, where the FFT dominates the execution time, this modification of the code
may lead to signicant performance speedup. For smaller targets, where the FFT is only a fraction of
the total execution time, the benefit will be lower. If the transpose represents 50% of the execution
time, the benefit may only be about 20%. We have measured a 12% benefit per grid point on a
single processor for a test case.

5. PARALLEL MATRIX TRANSPOSE

For multiple processors, the analysis of the time saved due to the treatment of the padding is
somewhat different from that of a single processor due to the nontrivial cost for the matrix transpose.
The amount of data transferred between the xy-direction to the z-direction, during the matrix
transpose reduces by a factor of 2. For large problem sizes, we have observed that the time
required for the transpose was comparable to the total time for the FFT. If the transpose is
bandwidth limited, the net speedup for FFT with transpose can be estimated as t1/t2 = (3t0 +
3t0)(3t0/2 + 7t0/4) = 24/13 ' 1.85. We have, in fact, measured an overall speedup equal to 1.7×
with the new treatment of the padding.

6. SCALING ANALYSIS

To compare performance of the old version of the code with the new version, we examine two
different targets referred to here as medium and large. The medium target fits within the memory
of a single node on our machine, and allows direct performance comparisons between the two code
versions. The large target, does not fit in the memory of a single node, and can only be run with
the new version. The large target illustrates that the new version of the code can handle larger
targets and that, for these big targets, it exhibits strong scaling.

An important advantage of the new implementation, is that it allows the code to utilize far
more processors. Whereas the original code limited the number of MPI processes to the number of
target orientations, typically O(102) the new version uses a team of processes for each orientation.
The number of MPI processes in a team is only limited by the size of the computational grid.

Parallel strategy for the new version of the code is good for the large case which does not fit
in the memory of a single node. With the new version of the code, we use teams of size 20 and
distribute the MPI processes across nodes with each process requiring one-twentieth of the memory.

Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 25–28, 2013 725

Figure 1: Execution time per grid point, τp = t(p)/nxnynz, as a function of processor count. Large target
with |m|kd = 0.3563 contained in a box of size (nx, ny, nz) = (256, 360, 360) marked with bullets (·) measured
in seconds. The dotted line represents perfect scaling of p−1. The intercept at log(τ1) = −1.3, marked with
an asterisk (*), suggests that the problem on a single processor would require at least 19 days to complete
compared with about half an hour on 800 processors.

For this problem, the FFT dominates the execution time taking almost 99% of the total. This part
of the code is fully parallelized and the execution time, for the fixed problem size, exhibits strong
scaling — decreasing inversely with the processor count as illustrated in Figure 1.

7. ACCURACY OF THE METHOD

The accuracy, as well as the performance, of codes that implement the discrete-dipole approximation
depends on a number of empirically determined parameters [10, 11]. The distance between cells, for
example, must be small relative to the wavelength of the incident wave as displayed in inequality (2).
The rate of convergence of the iterative solver also depends on the value of this parameter, smaller
values generating larger matrices requiring more iterations to converge.

Now that the execution time has been reduced to a few minutes of time for very big targets, we
can perform parameter studies to test the accuracy of the results. In particular, we can follow the
technique suggested by Yurkin and coworkers [11] to extrapolate the results to zero cell size.

8. SUMMARY

The major changes to the code, after decomposing the data structures, required a 3D transpose
for the FFT and a global reduction for the scalar products and norms in the iterative solver. Data
decomposition was by far the hardest change to make to the original code. Performance of the code
improved when we removed unnecessary calls to the FFT routine for padded zeros required for the
convolution. For big targets, the new code exhibits almost perfect strong scaling as the processor
count increases.

ACKNOWLEDGMENT

The authors are grateful to the NASA High-End Computing program for making this improvement
possible.

REFERENCES

1. Draine, B. T. and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J.
Opt. Soc. Am. A, Vol. 11, No. 4, 1491–1499, 1994.

2. Jackson, J. D., Classical Electrodynamics, 1st Edition, John Wyley & Sons, 1962.
3. Kahnert, F. M., “Numerical methods in electromagnetic scattering theory,” J. Quant. Spec-

trosc. Radiat. Transfer, Vols. 79–80, 775–824, 2003.
4. Newton, R. G., Scattering Theory of Waves and Particles, 1st Edition, McGraw-Hill Book

Company, New York, 1966.
5. Nukada, A., Y. Hourai, A. Hishida, and Y. Akiyama, “High performance 3D convolution for

protein docking on IBM blue gene,” Parallel and Distributed Processing and Applications:
5th International Symposium, ISPA 2007, Vol. 4742 of Lecture Notes in Computer Science,
958–969, Springer, 2007.

726 PIERS Proceedings, Taipei, March 25–28, 2013

6. Penttilä, A., E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola,
A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations
and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer, Vol. 106, 417–436, 2007.

7. Purcell, E. M. and C. R. Pennypacker, “Scattering and absorption of light by nonshperical
dielectric grains,” Astrophys. J., Vol. 186, 705–714, 1973.

8. Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM, 2003.
9. Yurkin, M. A. and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: Capa-

bilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer, Vol. 112, 2234–2247,
2011.

10. Yurkin, M. A., V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole ap-
proximation. I. Theoretical analysis,” J. Opt. Soc. Am. A, Vol. 23, No. 10, 2578–2591, 2006.

11. Yurkin, M. A., V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole ap-
proximation. II. An extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A,
Vol. 23, No. 10, 2592–2601, 2006.

